Lewis Acid-Induced Stereoselective Ene-Cyclization of ω -Unsaturated Trifluoromethylketones

Corinne AUBERT, Jean-Pierre BÉGUÉ,* and Danièle BONNET-DELPON CNRS-CERCOA. 2-8 rue Henry Dunant, 94320-THIAIS, France

Lewis Acid-initiated ene-cyclization of ω -unsaturated trifluoromethylketones allows access to 1-trifluoromethyl cyclohexanols and their fused bicyclic derivatives

In search of new methods for obtaining alicyclic systems bearing a CF3 group, we have recently reported studies of the Lewis acid promoted cycloalkylation of some ω -aryl α -trifluoromethylketones leading to 1-trifluoromethyltetralines and 1-trifluoromethylindanes.^{1,2)} A related strategy involving the intramolecular cyclization of ω -unsaturated carbonyl compounds is an attractive approach to prepare functionalized alicyclic compounds. These Lewis Acid-initiated ene reactions are well documented when they are performed with ω -unsaturated aldehydes.^{3,4)} But few examples have been reported with ω -unsaturated ketones presumably because of their lower reactivity.^{5,6)} However the electron deficient trifluoromethylketones are expected to be good enophiles for such Lewis Acid promoted ene cyclizations. Reported herein are the preliminary results of a study of the cyclization of the ω -unsaturated trifluoromethylketones $\underline{1}$, $\underline{2}$, and $\underline{3}$ with EtAlCl2 and TiCl4 (Table 1).

With ethylaluminium dichloride, all cyclizations occurred under mild conditions leading respectively to cycloalkanols $\underline{4a}$, $\underline{5}$, and $\underline{6a}$; in each case only a single regioisomeric product was obtained.

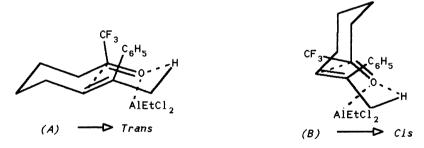
From $\underline{1}$, only a Prins reaction is possible. An inspection of molecular models shows that a highly strained transition state would be required in order for an ene reaction to occur. Cyclization of $\underline{1}$ would proceed via tertiary carbocation $\underline{7}$.

$$CF_3$$
 CF_3
 CF_3

Table 1 . Cyclization of ketones $\underline{1}$, $\underline{2}$, and $\underline{3}^{a}$)

Ketone ^b)	Lewis Acid	T/°C (time/h)	Products (yield/%) ^C)
1	EtA1C1 ₂ (1.1)	0 (4)	(4 <u>a</u>) 68(55)
<u>1</u>	TiCl ₄ (1.1)	0 (5)	$(\underline{4}a)$ 11 $(\underline{4}\underline{b})$ 23 $(\underline{8})$ 31 $(\underline{9})$ 31(2)
<u>2</u>	EtA1C1 ₂ (1.1)	- 78 (5)	(<u>5</u>) 86(75)
<u>2</u>	TiCl ₄ (1.1)	0 (3)	(<u>5</u>) 82(70)
<u>3</u>	EtA1C1 ₂ (1.1)	-78 (2)	$(\underline{6a})$ 81(72) $(\underline{11})$ 9(7)
<u>3</u>	Me ₃ A1 (1.1)	-78 (2)	(<u>6a</u>) 85
<u>3</u>	TiCl ₄ (1.1)	-78 (1)	$(\underline{6a}) \ 0(9) \ (\underline{6b}) \ 0(8) \ (\underline{11}) \ 85(68)$
<u>3</u>	TiC1 ₄ (0.3)	-78 (1)	$(\underline{6a}) \ 0 \ (\underline{6b}) \ 0 \ (\underline{11}) \ 78$

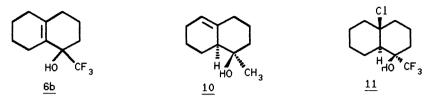
a) General procedure: EtAlCl_2 and $\operatorname{Me}_3\operatorname{Al}$ were purchased from Aldrich as a 1 M solution in hexane. Reactions were carried out under argon. Solution of ketones in dry $\operatorname{CH}_2\operatorname{Cl}_2$ (0.04 M) were cooled to the desired temperature and Lewis acid was added via a syringe. After the indicated reaction times the reactions were quenched by the addition of saturated aqueous $\operatorname{NH}_4\operatorname{Cl}$ solution. Extractive work-up into ether afforded products which were then purified by $\operatorname{SiO}_2\operatorname{chromatography}$.


b) Ketones $\underline{1}$ and $\underline{3}$ were described in Ref. 7, ketone $\underline{2}$ in Ref. 8.

c) Estimated yields from GC analysis, the parenthetic values are isolated yields. Products were characterized by their spectral data: ^1H , ^{13}C , ^{19}F NMR, IR, and MS.

Loss of a proton might be expected to occur from both the β -sites to give a mixture of the two regioisomeric alkenes $\underline{4a}$ and $\underline{4b}$, but in fact only $\underline{4a}$ was obtained with EtAlCl_2 . An intramolecular deprotonation by the chloroaluminium alkoxide group should explain this surprising regioselectivity. With Ticl_4 , the reaction is not selective, both the unsaturated alcohols $\underline{4a}$ and $\underline{4b}$ were obtained and when staying in the medium, they turn into the dienes $\underline{8}$ and the trifluoromethylbiphenyl $\underline{9}$.

From $\underline{2}$ and $\underline{3}$, the ene and Prins processes could be invoked, but the localization of the double bond in $\underline{5}$ and $\underline{6a}$ (established by NMR and mass spectra) indicates an ene reaction, since no isomerization occurs under the reaction conditions. 9)


Furthermore, only one diastereoisomer was obtained from the $\it E$ -enone $\it 2$. The stereochemistry of compound $\it 5$, with a $\it trans$ relationship between the vicinal alkenyl and the hydroxyl group, is postulated by assuming that there is a preference for the $\it trans$ chair-chair-like transition state $\it A$ rather than for the $\it cis$ transition state $\it B$. $\it 10$) This is well consistent with the predominant formation of such a $\it trans$ product in the cyclization of the 4,8-dimethyl-7-nonen-2-one. $\it 5$,11)

The stereochemistry of $\underline{6a}$, obtained from ketone $\underline{3}$, is the same as that of alcohol $\underline{10}$, resulting from cyclization of the corresponding methyl ketone¹²⁾ and is the result of the only possible transition—state in the ene reaction, as indicated by molecular models inspection. The chloride $\underline{11}$ was obtained very selectively from $\underline{3}$ and $\mathrm{TiCl_4}$. The trans junction is inferred from its dehydrochlorination with DBU leading to the allylic alcohol $\underline{6b}$; the configuration of C-9 and C-1 are the same as that of $\underline{6a}$ since in presence of MeAl $_3$, $\underline{11}$ leads to

1838 Chemistry Letters, 1989

a mixture of 6b and the isomeric Δ^{4-10} -octalin; the axial position of chlorotitanium alkoxide can favor an intramolecular transfer of chloride and explains the stereochemistry of 11.

In this way, functionalized mono and bicyclic six-membered ring compounds bearing a CF_3 group are available. An extension of this reaction to obtain other polycyclic compounds is now under investigation.

We are grateful to Professor Takeshi Nakai for good criticisms.

References

- 1) D. Bonnet-Delpon, C. Cambillau, M. Charpentier, R. Jacquot, D. Mesureur, and M. Ourevitch, J. Org. Chem., <u>53</u>, 754 (1988); D. Bonnet-Delpon, M. Charpentier, and R. Jacquot, J. Org. Chem., <u>53</u>, 759 (1988).
- 2) J.P. BÉGUÉ and C. AUBERT, Tetrahedron Lett., 29, 1011 (1988).
- 3) E.J. COREY and D.L. BOGER. Tetrahedron Lett., 21, 2461 (1980).
- 4) N.H. Andersen, S.W.Hadley, J.D. Kelly, and E.R. Bacon. J. Org. Chem., <u>50</u>, 4144 (1985) and references cited herein.
- 5) B.B. Snider, M. Karras, R.T. Price, and D.J. Rodini, J. Org. Chem., <u>47</u>, 4538 (1982).
- 6) A.C. Jackson, B.E. Goldman, and B.B Snider, J. Org. Chem., 49, 3988 (1984).
- 7) J.P. Bégué and D. Mesureur, J. Fluorine Chem., <u>39</u>, 271 (1988).
- 8) C. Aubert, J.P. Bégué, M. Charpentier, B. Langlois, and G. Née, J. Fluorine Chem., 44, 361 (1989).
- 9) B.B. Snider, Acc. Chem. Res., <u>13</u>, 426(1980); B.B. Snider, D.J. Rodini, M. Karras, T.C. Kirk, E.A. Deutsch, R. Cordova, and R.T. Price, Tetrahedron, <u>23</u>, 3927 (1981).
- 10) K. Mikami, T.P Loh, and T. Nakai, Tetrahedron Lett., 29, 6305 (1988).
- 11) M. Karras and B.B. Snider, J. Am. Chem. Soc., 102, 7951 (1980).
- 12) B.B. Snider and E.A. Deutsch, J. Org. Chem., 48, 1822 (1983).

(Received July 20, 1989)